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DETERMINATION OF THE HEAT-TRANSFER CHARACTERISTICS 

IN A CHANNEL OF ANNULAR CROSS SECTION WITH SPIRAL FINS 

G. V. Konyukhov, A. I. Petrov, and Yu. G. Smirnov UDC 536.242 

The characteristics of heat transfer in the developed turbulent flow of a viscous 
incompressible liquid in a slot channel of annular cross section with spiral fins 
are analyzed. Expressions are obtained for calculating the Nusselt numbers at 
the convex and concave walls of the channel. 

In the literature there are experimental data on the asymmetry of the averaged velocity 
profiles and the distributions of pulsation components in curved channels [1-4]. One can 
presume the existence of the corresponding asymmetry of the conditions of heat transfer be- 
tween the heat-transfer agent and the walls in a curved channel, which is also confirmed ex- 
perimentally for plane curved channels [I]. 

Let us estimate the possible difference between the values of the heat-transfer coeffi- 
cient ai,2 = qz,2/(T1,2 - T) at the convex and concave walls of a channel of annular cross 
section with spiral fins as a function of the geometrical characteristics of the channel, 
the physical characteristics of the heat-transfer agent, and the hydrodynamic pars~eters of 
the flow. We carry out the analysis using the methods and assumptions adopted in the investi- 
gation of hydraulics and heat transfer in smooth annular channels without fins and plane curved 
channels [i-6]. We consider the turbulent flow of an incompressible viscous heat-transfer 
agent in an annular channel with spiral fins under steady-state conditions of moderate heat 
fluxes and velocities, outside the region of the disturbing action of the fins. We assume 
that the thermophysical properties of the liquid are constant and the heat flux through the 
walls of the annular channel is constant along the channel length and angularly. 

We assume that secondary flows are absent, i.e., 

s s 
V r = O ,  Y z =  V ~ - - ,  % = % ~ ,  

2nr 2~r 

(1) 
OP OP S 1 OV S OV OT OT S 

Oz rO~ 2~r ' r O~ 2nr Oz ' Oz rO~ 2nr"  

A t  t h e  i n n e r  a n d  o u t e r  w a l l s ,  

-- 0T I VI,2 = 0, ql,~ = ~1,2 (TI,~ -- T) = -- ~ . ( 2 ) 
Or r=rt,e 

We d e t e r m i n e  t h e  c h a r a c t e r i s t i c s  o f  h e a t  t r a n s f e r  a t  t h e  i n n e r  a n d  o u t e r  w a l l s  o f  t h e  c h a n n e l  
i n  t h e  f o r m  o f  t h e  f u n c t i o n s  

Nu1,~ = f(Re, Pr ,  S/2~r2, 6/r 2, ql/q~), 

Nul,~ = al,2dh/~ = 2ql,26/~ (T1,2 - -  T), 6 = r z - -  r l .  
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In such a statement the temperature profile T(r) can be determined from the heat-trans- 

fer equation 

pC.Vz OT 1 -+- . . . .  (Z + Z~)r . (3) 
Oz = r Or - ~ r  

Here the functions Vz(r) and At(r) = ~[c(r)/v](Pr/Prt) are constructed within the frame- 
work of a semiempirical four-layer model of the flow, similar to that used in [i] to calcul- 
ate the velocity profile of an incompressible liquid in a plane circular channel�9 Integrat- 
ing (3) over r from r~ to r2, we obtain 

OT qql + Gq= (4) 

We obta in  the  tempera ture  p r o f i l e  of the h e a t - t r a n s f e r  agent  over r as a r e s u l t  of two- 
fo ld  i n t e g r a t i o n  of (3) over r us ing (2) and (4) :  

T 2 - -  T = $q2 . S ] { r*q~ -J- | X 
[ ( l ~ r * ) ' @ r * ] ( l  ~ t )  i { [ (1--  r*) ' -i" r* ] 2} ~. ~* I + S* [ ( 1 - - r * ) ~ + r * ] d ~  (5) 

0 

X 
~9...{t + [ ( l - - r * '  ~-~-r* S* ]-~} [ ( t -  r*)~ -~ r*l d ~ -  r'q*} d~. 
0 

Here q* = ql/q2; r* = rl/r2; ~ = (r - ri)/(r2 - ri); 
ture of the liquid averaged over the radius is 

* = Vz/Vz; S* = S/2~r 2. The tempera- 

T =  
% (r~ - rb 1 

r l  0 

Tq: l(1 -- r*) ~ + r*] d~. 

Substituting the function for T from (5) into the latter expression and keeping in mind that 

2 
,---713 [ ~o* [(1 - -  r*) ~ + r*] d~ -- I, 

we obtain the expression for T 2 

Nu I 2 

- T. Similarly, we determine the value of T i - T and then 

= dhql,2/(Tl 2 -- ,r)%: 

S ~* 1(I -- r*) ~ + r*] d~ 
1 _ 28/dh / ~ 

Nul (1 -t-r*)q* [(I --  r*) ~ + r*] (1 -t-~,t/~) 
0 {i �9 I : ' : + i }  . . . .  x 9 ~{I - i  (1 - r * > ~ + r *  2 

o i S~'-' [(1 --  r*) ~ + r*] d~ 

S* [(1--r*).~ + , * ] d ~ -  1 , -' I 
b 

(6) 

I 26/d h 
Nu., 1 + r* 

I 

- - - - -  y - -  

0 

.i' ~'' [(1 - - r * )  ~i + r*] d~ 
6 

l(1 - -  r*) ~ + r*] (I ,-1- ~,t,'~-) 

[ / ' q *  -'.- i 

i + ] ) .  . .[(1--r:,)~+r~l d~ 
b 

"< ~* 1 -~- ( 
D 

l-.-r*)~--!-r* ] 2} 
S* I(1 --- r*) ~ + r*] ci~- r*qJ d~. 

%" 
/ N 

(7) 
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The hydraulic diameter of an annular channel with spiral fins is 

46(1-i-r*) 

dh= (l/1 ~ (r*/S*) 2 @ t / i  + 1/S~)(r*/V l - !4r* /S*y+l /V-1 -i- l /S*5 
From the expressions presented above one can easily obtain simpler functions for the 

particular variants of one-sided heat supply (q* = 0 and q* = =), a plane round channel (S* = 
0), a plane straight channel (r* ~ I), and a cylindrical pipe of round cross section (r* = 
0, q* = 0, S* = ~). In the latter case the expression for Nu 2 coincides with the function 
obtained in [7] for heat exchange in a pipe and satisfactorily confirmed by experimental data. 

The function ~*(~) appearing in the expressions for Nul, 2 is determined using a semi- 
empirical four-layer model of the flow. According to the data of experimental investigations 
of the characteristics of turbulent flow in a plane curved channel [2, 3], in the region of 
the stream near a wall the radial velocity profile is determined by wall friction, as in 
straight pipe flow. Therefore, we take the law of velocity variation in the two layers of 
the model closest to the walls by analogy with a plane straight channel: 

5 ~ y1~.2 ~ 30, V/VI',2 = -- 3,05 + 5 lng+, 

I/- 
v * ~  = T,,~ y+o = ~,,~v*/v, y,,~ = I t - -  r,,.~l. p ~ , -  : 

For the developed turbulent flow in the third layer from the wall we use an empirical 
power function proposed in [2] for a plane curved channel, 

v/v~,2  = a(y+~,~ )!/",,:,  

w h e r e  = f , �9 

In  t h e  f o u r t h  l a y e r  o f  t h e  model  we t a k e  t h e  p r o f i l e  V~r = c o n s t  (V r,/-~rs = c o n s t ) ,  d e t e r -  
mined e x p e r i m e n t a l l y  in  a p l a n e  c i r c u l a r  c h a n n e l  [2] ( t h i s  p r o f i l e  c o r r e s p o n d s  t o  an i n v e r s e -  
l y  proportional dependence between the velocity of a liquid element and the length of its 
path along the trajectory of the averaged motion between two cross sections of P = const): 

V~ V cos ~ V~ 

v~ v t ~  Vc0~ 13~,2 ' P~ 

The quantities ~1,2 appearing in the expressions for V'i, 2 and y+i,2 and the function 
~(r) required for the calculation of g(r) are obtained as a result of a solution of the equa- 
tion of conservation of momentum [8] in the axial direction 

. ,  - , o  I a a , o v i K ) ,  
P O ~ - -  Oz r Or 

where 

For the case of steady flow, Vr = 0, and under the assumption that the pulsation veloc- 
ity components along ep and z are constant far from the fins, the equation of motion takes 
the form 

OP =2t~ O'V~ O . o 1 O 0 O 
az ' oz---;- - -  p - $ ;  t v ;  ) + - -  (r'~,~) + - -  ( 8 )  Or p 

where %'z = ~ - -  pv,- Vz; %~ := TSz -- pv~ V,~. 

In accordance with (I), 

rO----~ = 2~r  O ~  - 2 i v  Oz LP Oz \ S 2~r = 

0 v. I (s) l 
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O (Vr 2~r a ( v ~ ) =  8 (V2), 
rOcp S rOr~ Oz 

and hence 

1 + - -~-r  ~r~ + ~ ~' '  ( 9 )  

Let us estimate the order of magnitude of the terms on the right side of Eq. (9). As the 
scale for Vz we take Vz, for r we take r2, for dr we take 6/2, and for z we take S/a = 
h/l + (S/2vr2) f (where ! is the number of fins; h is the distance between fins on the involute 
of the outer wall of the channel, which is the analog of the width of a plane channel). The 
order of ~rz over the entire thickness 6 of the channel is no less than the order of ~(SVz/Sr) 
and hence the order of the second term on the right side of (9) is no less than (4~Vz/62) ' 
[i + (6/2r2)]. The ratio of the orders of the first and second terms exceeds (6/h)2/4(i + 
/2r2), which is less than 0.01 for 6/h = 0.2. Neglecting the first term on the right side 
of (9), we obtain a first-order linear differential equation for rrz, the solution of which 
gives the function ~rz(r): 

1 OP r2--R~ 1 [ O P  ~ 1+1 /S  .2 r2--R~ 
%~= 2 Oz r -- 2 ~ ) 2  1-1-(2~r/S) 2" r (10) 

The quantity (SP/Sz)2 can be expressed through the coefficient of hydraulic resistance ~z and 
the average axial velocity component of the gas: 

( OP ) ~  2 . . . .  2 126 9V~2 

Using the expression for Zrz, we determine ~r, = Xrz(2~r/S) and T = r + ~2rz. The 
relation for ~r~ can be obtained through the solution of the equation of conservation of 
angular momentmn in the cp direction, analogous to what was done for ~rz. The equation con- 
necting y+ and ~ includes rz,2: Y+ = f(~, Rez, fz, 6/r2, S*, Em). Thus, for the three 
layers of the four-layer flow model closest to the walls we can write ~* = f($, Rez, ~z, 6/r2, 
S*, Sm). For the fourth layer, where V~r = const, or in the more convenient form F~r= kVcr 2, 

~,  = k(1 + r*) ( l i )  
2 |(1 - -  r*)~ -~- r*p 

In deriving the expression for the velocity profile in a spiral channel it was assumed 
that the radial-average value of the velocity does not vary along cp. Within the framework 
of the semiempirical applied model under consideration this assumption is fully justified, 
since the calculated functions V(~) and V(z) far from the fins for the actual parameters 
of the channel and liquid are extremely weakly expressed. We obtain the function V(~) from 
the first equation of the system of equations of motion, which under these conditions has 
the form 

OP V~ 
Or ' = P "  r ' 

and from the relation, due to the geometry of the channel, 

O~ ,2 1 + (r/S*r~)" 
D i f f e r e n t i a t i n g  t h e  f i r s t  e q u a t i o n  w i t h  r e s p e c t  to  ~ ,  and t h e  second  w i t h  r e s p e c t  to  r ,  and 
e q u a t i n g  t h e  r i g h t  s i d e s ,  we o b t a i n  

from which 

a (v$) = c ,  (r), aq~ 

V~(r, ~) =VC,.(r)  ,p + c;,' 
C,=  2 (a__~, ) [ l+ l /S*2] ( r / r2 )  2 

p 2 [1 + (r/S*r2y]= 
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Fig. i. Calculated velocity profile in a 
spiral channel with r* = 0.9 and S* = i: 
i) Re = 5.23'i0~; 2) 1.05"10s; 3) 5.3.105 

We thus obtain the dependence for V(z). For a channel with one spiral fin S* = i, 6/r2 = 
0.9, and ~ = 0.04 the calculated values of V~ on the two sides of the fin differ from the 
value of V~ averaged over ~ by about 2.5%. 

The coefficient k in (ii) and the coordinates for joining the power-law profiles and 
the profile V~(r) = const are determined from the condition 

r= 

2 S = % (d - d) 
r ,  

and the condition of equality of the velocities at the joining points. The coordinate ~m, 
where ~rz = ~r~ = 0, was calculated from the equation 

~ =: ~ o  -F (0,5 - -  [~o) /10  7 (1 - -  ~ l / r ~  ), 

which for ~m0 = 0.32 well approximates the experimental data for a plane circular channel 
presented in [3]. According to these data, in turbulent flow in a plane circular channel ~m 
hardly depends on Re and is a function of r* only. The function e(g) is determined from 
the relation 

"~=]/'x~+%=P(v§ \ Or ) ar r ," 

The expressi~ %=PW( aV~ar V~ $r is adopted for spiral flow by analogy with flow in a 

plane circular channel, where it describes most accurately the experimental data of [4] on 
the distribution of �9 over a channel cross section. It should be noted that the relations 
V~ = Vz(2~r/S) and ~ = Tz(2~r/S), following from the geometry of spiral flow, are jointly 

~ = p (v q- e)(-~V~ __ V~ -) and ~z = P (~ q- g) aVz but not under the assumption satisfied for 
\ 8r r Or ' 

T,----p(w~-,)(~---~) or ~,----p(w q-g)OV,ar ' which are also considered in the analysis of 

flows in curved channels. 

The function Nui, 2 = f(Re, Pr, S*, r*, q*) and the dimensionless temperature profile 
T* = (T - T)GC/2~6(rzq I + r2q 2) were calculated for a plane curved channel (S* = 0.01) and 
a channel of annular cross section with spiral fins (S* = I). 

In the first stage of the calculation the velocity profile V/V = f(g) was determined 
from the given values of Re, r*, S*, and ~m0. Then the function e/v = f(~) was calculated, 
and the quantities Nuz and Nu2 and the distribution T*(~) were calculated for a number of 
values of q and Pr/Prt. Preliminary calculations of the dimensionless temperature profile 
T*(~) showed that in the vicinity of Sm, where the value of e/v calculated from the equa- 
tions obtained decreases to zero, there is strong distortion of the function T* (a section 
appears where 82T/8~: < 0 for ql > 0 and q2 > 0). The experimental data on the distribution 
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Fig. 2. Calculated temperature profiles in a spiral channel under conditions 
of symmetric (a) and asymmetric (b, c) heat supply for r* = 0.9, S* = l, and 
Pr/Prt = 1. a. q* = I: l) Re = 2.5"10 ~, Nu I = 81, Nu 2 =93, T*~ = i12, T*~ = 
98; 2) 1.05"i05, 211, 218, 180, 174; 3) 5.3"10 ~, 338, 348, 566, 550. b. q* = 
I00: 4) Re = 2.5"104 , Nu~ = 71, Nu 2 =-6, T* I = 276, T* 2 = -34; 5) 1.05.10 s, 
186, -18, 437, -44; 6) 5.3.10 s, 322, -101, 1270, --40. c. q* = 0.01: 7) Re = 
2.5.104 , Nu I = -6, Nu 2 = 79, T* I = -31, T* 2 = 221; 8) 1.05.10 s, -17, 193, -43, 
378; 9) 5.3.105 , -84, 333, -44, ii00. 

Fig. 3. Calculated function Nul,z(Re) for a spiral channel under conditions 
of symmetric heat supply q* = 1 for Pr/Prt = i: I) Nu2; II) Nul; III) 
0.021Re~ i) r* = 0.9, S* = 0.01; 2) 0.8, 0.01; 3) 0.9, i; 4) 0.5, ~ [5]; 
5) 0, i [6]. 

of E/~ over the cross section of a curved channel [2] and of a channel of annular cross sec- 
tion [5] do not give an exact representation of the value of e/~ near Sm. In any case, the 
data of [5] indicate that the value of e/~ at ~ = Sm does not equal zero in a channel of an- 
nular cross section. Therefore, the final calculations of the profile T* = f($) were made 
with a ratio e/~ varying linearly in the vicinity of gm, analogous to what was done in [i] 
in calculating Nu for a plane curved channel ("bridge scheme" [9]). 

The results of the calculations are presented in Figs. 1-4. 

Each of the graphs of Nut(q*) (Fig. 4) has a discontinuity (+~, -~) at a certain value 
of q* < i, while Nu~(q*) has one at q* > i. The sharp increase in Nu I and Nu 2 as this value 
of q* is approached does not signify an imprgvement of the heat transfer in the gas, but in- 
dicates a decrease in the difference Tl, 2 -- T, when the considerable difference between ~i 
and q2 results in an essentially asymmetric temperature field along r, and the quantity T be- 
comes as close as desired to the temperature of the colder wall and can be either greater 
or less than it. When the usual function Nu(Re, Pr) for symmetric heat supply is applied 
to the problem of asymmetric heat supply, it is possible to overstate the calculated tempera- 
ture of the adiabatic wall or the wall through which the lesser heat flux is supplied to the 
heat-transfer agent (if the wall temperature is defined as Tl, 2 = T + qi,2/~1,2). 

An analysis of the dependence of Nul,2 on Re shows that for Pr/Pr t = 1 the values of 
Nu I and Nu 2 are proportional to Re a, where a = 0.8 for Re < 5.10s; the exponent a decreases 
with an increase in Re. 

The dependence of Nut,= on the Prandtl number for Re < l0 s can be represented in the form 
Nul, 2 = kPr s, where k = f(Re, S*, r*), while the exponent b (for 0.3 < b < 0.5) is larger 
for Nul than for Nu= and increases with an increase in Re. 
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F i g .  4. C a l c u l a t e d  f u n c t i o n  Nua ,2 (q* )  f o r  a s p i r a l  c h a n n e l  
w i t h  r ~'~ = 0 . 9 ,  S* = 1, and P r / P r t  = 1: 1) Re = 2 . 5 . 1 0 4 ;  2) 
1 . 0 5 " 1 0 s ;  3) 3 . 5 . 1 0 s ;  P r / P r t  = 0 . 1 :  4) Re = 1 . 0 5 . 1 0 s ;  P r /  
P r t  = 10: 5) Re = 1 . 0 5 . 1 0 s ;  I )  Nut;  I I )  Nu 2. 

It should be noted that for all the values of Re, Pr/Prt, r*, S*, and q* = 1 considered, 
the Nusselt number Nu 2 at the outer concave wall of the channel exceeds the value of Nu I at 
the convex inner wall. These calculated results are in qualitative agreement with the data 
of an analysis of the stability of flow near convex and concave walls [2] and with the data 
of measurements of the pulsation components of the gas velocity in a plane curved channel 
[4], indicating the suppression of radial pulsations near the inner convex wall of the chan- 
nel and their strengthening near the outer concave wall. 

In the vicinity of Pr/Prt = 1 for all the values of the Reynolds number considered (2.4" 
i0~-5.3.104) the ratio Nu2/Nu I is larger in the case of r* = 0.8 than for r* = 0.9 (Fig. 4), 
Nu 2 is larger for r* = 0.8 than for r* = 0.9, while Nu I is correspondingly smaller. For r* = 
0.9 the ratio Nu2/Nu I is considerably larger in the case of a plane curved channel (S/2~r 2 = 
0.01) than in an annular channel with spiral fins. 

Thus, as a result of the analysis made under the adopted assumptions, we can conclude 
that in the analyzed range of geometrical parameters (r* = 0.8-0.9, S* = 0.01-i) the charac- 
teristics of the heat transfer at the outer (concave) wall of an annular channel with spiral 
fins are improved, while at the inner (convex) wall they are worsened in comparison with 
flow in a straight channel with a decrease in rl/r 2 and S/2~r2. In the particular asymptot- 
ic cases as r* + i and S* + ~ the calculated function Nul,2(Re , Pr) approaches the well- 
known empirical function Nu = kRe~176 

In presuming the existence of a unique dependence between the radius of curvature of 
the trajectory of the averaged motion of elements of the liquid near the convex and concave 
walls and the weakening and intensification of heat transfer to the liquid near the re- 
spective walls, one must keep in mind the character of the dependence of the radius of curva- 
ture of the spiral trajectory on the radial coordinate: r s = r[l + (S/2~r)=]. Here rs has 
a minimum value at r = S/2~ (the angle of inclination of the fins to the axis is ~ = 45~ 
i.e., variants of an annular channel with spiral fins are possible where: a) 8rs/~r > 0 for 
r I < r < r2 (S/2~r I ~ I); b) 8rs/Sr < 0 for r I < r < r 2 (S/2~r 2 j i); c) 8rs/Sr < 0 for r~ < 
r < r 0 and 8rs/Sr > 0 for r 0 < r < r 2 (S/2~r I < i and S/2~r 2 > I). For themaximumintensifica- 
tion of heat transfer to the concave wall of a spiral channel it is evidently advisable to 
have S = 2~r 2 (~z = 45~ 

NOTATION 

r, ~ , z, radial, angular, and axial coordinates, respectively; Z, n, curvilinear coord- 
inates directed along the spiral trajectory and perpendicular to it and r, respectively; V, 
velocity; v', pulsation component of velocity; P, pressure; T, shear stress; q, specific 
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heat flux; T, temperature; ~, coefficient of heat transfer to the channel wall; ~, coeffi- 
cient of thermal conductivity of the liquid; p, density; C, heat capacity; dh, hydraulic 
diameter of the channel; S, pitch of the spiral fins; Nu, Nusselt number; Re, Reynolds num- 
ber; Pr, Prandtl number; Prt, turbulent Prandtl number; E, coefficient of turbulent transfer 
of momentum; v, kinematic viscosity; p, dynamic viscosity; Rm, radial coordinate of the surface 
where T = 0; rs, radius of curvature of the spiral trajectory; G, mass flow rate of the liquid; 
~, angle of inclination of the spiral trajectory of an element of liquid to the z axis at 
the radius r. Indices: i, 2, conditions at the inner (convex) and outer (concave) walls 
of the channel, respectively. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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INFLUENCE OF SOLID DEPOSITS ON THE INCEPTION OF SELF-EXCITED 

THERMOACOUSTIC OSCILLATIONS IN HEAT TRANSFER 

TO TURBULENT FLUID FLOW IN TUBES 

N. L. Kafengauz and A. B. Borovitskii UDC 66.096.5.536.24:532.517.4 

It is established experimentally that solid carbon deposits formed in heat trans- 
fer to kerosene in small-bore tubes induce self-excited thermoacoustic oscilla- 
tions. 

Perspectives have changed considerably in recent years in regard to the nature of solid 
deposits formed in heat transfer to a fluid. It was previously thought that they merely 
created an additional heat resistance and caused the temperature of the heat-transfer surface 
to rise accordingly. It has now been established that the physicochemical and hydrodynamic 
processes occurring in solid deposits can exert an appreciable influence on the various heat- 
transfer characteristics and can, depending on their nature and the regime parameters, de- 
grade or improve heat transfer, alter the flow resistance, intensify self-excited thermo- 
acoustic oscillations (STAO), decrease the velocity of sound propagation along the fluid 
flow, etc. [1-4]. 

1985. 
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